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On the precession of a resonant cylinder 

By ROGER F. GANS 
Department of Geology, University of California, Los Angelest 

(Received 23 July 1969) 

A fluid contained in a rotating cylinder has an inertial mode which is excited by 
forced precession of the container. Wood’s (1965, 1966) early work specifically 
excluded resonance phenomena. Recently McEwan (1970) has discussed re- 
sonance phenomena for strong amplitude of excitation, corresponding to rapid 
precession in this work. 

In  this paper the magnitude of the resonant response for small precession rate 
is precisely calculated by matching the Ekman layer suction to the precessional 
forces. The procedure is to find the resonant mode vl, compute its boundary 
layers, V,, and the associated Ekman layer suction. The second-order problem 
has a solvability condition which is satisfied by matching the Ekman layer suction 
to the precession. 

1. Introduction 
The condition that a rotating cylinder filled with an inviscid fluid be resonant 

under a precessional motion, that is, that there exists an inertial mode with the 
frequency of rotation, is such that any cylinder is arbitrarily close to resonance. 
Woods (1965, 1966) original work left open the question of resonance. Recently 
McEwan (1969) has performed a series of experiments confirming the existence 
of resonance. He has estimated the magnitude of the response for large excitation 
amplitude assuming a non-linear limiting mechanism. In  this paper a precise 
calculation of the response amplitudes, valid for small excitation amplitude, 
is made, and the results compared with experiment. 

The plan of this paper is to seek solutions of the Navier-Stokes equations 
inside a cylinder of length L and diameter D rotating about its symmetry axis 
with angular velocity w and precessing about some other axis with angular 
velocity Q. The direction of the precession axis is arbitrary. It will be taken to 
be perpendicular to the rotation axis, and it will be supposed that the viscosity 
is small enough to  justify a boundary-layer approach. First, the resonance being 
considered will be shown to be a necessary consequence of seeking a response 
of the size Q/w 4 1. Then a set of inertial modes will be found, and matched to the 
container boundary by a boundary layer. This layer will be seen to be an Ekman 
layer with an associated Ekman suction of size eE*. Matching the suction corre- 
sponding to the resonant mode to the precessional forces in an integral sense 
gives e - E-*( a / w ) .  The non-resonant modes decay and are unimportant for the 
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steady-state response being considered. The matching condition can be shown to 
be correct for !2/w < ES. 

Experiments were performed for precession rates spanning the range of validity 
of the theory. They exhibit agreement with theory in the range where agreement 
is expected. Beyond this range an interesting non-stationary behaviour is im- 
posed on a flow which is qualitatively like that given by theory. 

2. Formulation 
Consider a cylinder of length L and diameter D rotating about its symmetry 

axis with angular velocity w, and precessing about an axis at right angles to w 
with angular velocity SL. The container is filled with an incompressible fluid with 
kinematic viscosity v. The reference co-ordinate system is assumed to rotate 
with 8, and is defined to be such that 

o =ok; S2 = Szi. 

Using v for velocity, P for pressure and p for density, the appropriate equations 
are 

v . v  = 0. 

In  this reference frame steady-state solutions are possible and the time deriva- 
tive of v has been dropped. The appropriate boundary condition is v = o x r. 
Non-dimensionalizing according to the scheme 

"'1 (2.1) 
v . Vv + ZSZi x v - vV2v + V(P/p + +SZ2(x2 + y2)} = 

r = +Dr', v = SwDv', (P/p) + &Q2(x2 +y2) = $iPD2P' 

produces the equations 

( 2 . 2 )  I v' . Vv' + 2Rp i x v' - EV2v' -k VP' = 0, 

where R, = Q/o and E = 4v/wD2. The primes serve no further use and can be 
dropped. The boundary condition becomes v = k x r. 

These equations will be solved under the assumption that R, and E are both 
small, using the boundary-layer expansion 

V . V '  = 0, 

( 2 . 3 )  1 
v = k x r+elvl+e2v2+ ..., 

+€IT, + € 2 7 2  + . . . , 
P = + ( X 2 + y 2 ) + € 1 q + € 2 P 2 + . . . ,  

+ SIPl + &+ . . ., 
where the boundary-layer functions, exponentially small away from the 
boundary, are denoted by a tilde. The 6's are c2 @ el @ 1. It will be shown that 
a consistent ordering is el N R, E-t and e2 N R,. 

The resonance problem can be demonstrated by trying to put el - R,. The 
interior first-order equations become 

(2.4) 

[A - 4(a2/a~2)] Pl = 0, 

[ (2/w) + (a/aw)] Pl = 0,  on a( = , /(x2+~2)) = 1 

aP,/az = - 2a e@, on x = LID. 
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P, and v1 have been taken proportional to ei$ and the equations written in a 
cylindrical co-ordinate system w, $, z .  

The solution for Pl is 
P, = ~ A , J , ( k , w ) s i n ( k z / 1 / 3 ) z e i ~ .  

1 

The first boundary condition requires that {kJ satisfy 

2J,(lc,) + k,J#C,) = 0. (2.5) 

Using this relation as the basis for a Dini series (Erdelyi et al. 1953, pp. 71-2) 
one can expand w and find the condition for the {A,), viz. 

and this is adequate so long as cos [(k,/J 3) (LID)] does not vanish. The condition 
that it vanish is that 

L (2n+1)7~1/3 
I = 0, -- 

D 2kl 
(2.7) 

and for any LID one can choose n and 1 so that the left-hand side of (2.7) is 
arbitrarily close to zero. 

It will be supposed that v, represents the resonant response and v2 the non- 
resonant. The e’s will be chosen as e, = RpE-i and e2 = Rp. This choice will be 
justified below. The procedure is as follows: 

(1) find the resonant mode; 
(2) find the boundary layers required; 
(3) compute the Ekman layer suction; and 
(4) compute the amplitude of v, by matching the Ekman layer suction with 

This procedure is analogous to that used by Busse (1968) in his investigation 
the 2Rpi x vo term. 

of the precessing spheroid, which is resonant for zero ellipticity. 

3. The first-order solutions 

Only the resonant term will be driven and 
The interior solutions are governed by the homogeneous equivalent of (2.4). 

PI = A, J1( kl w )  sin (I&/,/ 3) z ei$, (3.1) 

where I is the index identifying the particular resonance. If one writes v, in 
cylindrical co-ordinates as (‘u,, v,, w,), these components in terms of P, are 

. ap, w,= 1 . - .  
az J 

(3.2) 

55-2 
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Only the normal components vanish on the boundary so a boundary-layer 
solution (C1, El, G,) such that 

u1+G1 = W1+v", = w,+G, = 0, 

on the boundary is required. Since u1 and w1 both vanish on portions of the 
boundary, one requires a different treatment of the boundary-layer probb, lrn on 
the two different sorts of boundaries. 

On the end-plates rescale in the x direction so that 5 = & ( z  7 LID) E-3, and 
put fl proportional to exp [([/S) + i#]. The divergence condition to lowest order 
is aG,/a[ = 0. Since GI, must vanish in the interior, Gl = 0. The k component of 
the momentum equation to lowest order is apl/a[ = 0, and the same argument 
gives pl = 0. The remaining two equations give 

l + i  I - i  
6 - - -  6 - - .  '- J 2 '  2 -  4 6  

If Q, = Alexp ([/6,+i#)+A2exp(</6,+iq5) 

and G1 = iA, exp (</dl + i#) - iA, exp (</c?~ + iq5) 
are substituted into the boundary condition, the result, after some algebraic 
manipulation, and simplification of Bessel function expressions, is 

(3.3) 
ii, = 2 [ ~ i k l J , ( k z a ) e r ~ s l + Q i k ~ J , ( k l w ) e ~ ~ s z ] A z e i @ ,  

G1 = & [ - +klJo(klw) ec/81 + &kZJ2(kzw) ec/sa] A,ei@. 

Because of the non-axisymmetric nature of the problem it is necessary to scale 
the radial co-ordinate by E4, rather than Eg or Ea. Thus one puts 7 = (1 - m) E-3 
and puts 8, proportional to exp (~ /&+ i$ ) .  The normal velocity and first-order 
pressure are eliminated as above, and the boundary-layer equations are 

1 

{i - (l/S"} (G1, 6,) = 0, 

6 =  - ( l - i ) / 4 2  = -436 , .  

and S2 = -i. This single 6 is 

The solution is then written in the form 

6, = A exp ( - 714 3 6, + i#); iZl = - i(aA/ax) exp ( - r / J  3 6, + iq5). 

The boundary condition determines 

A = Jl(kz) sin (41 J 3 )  zA,, 

and so the value of GI, on the boundary, is 

- i (k i /J  3) J i ( W  cos (kz/J 3) 2 4 ,  

and (3.2) shows that wl + GI = 0 on rn = 1 as required. 

three divergence conditions 
The Ekman layer suction associated with f, is obtained by integrating the 

a i a  i 
-G,+--(wQ,)+-v"l = 0, ay  a 

a ,  i a 
v" +-q = 0. 5jU2+G a x  
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This is a straightforward integration and the result is 

k; 6, = i-Jl(kzw) (6,-36,) Alei$, 
6 
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(3.7) 

4. The second-order problem 

is required. Neglecting terms of O(s:) and higher gives 
To match the Ekman layer suction (3.7) above, a second-order interior solution 

2k x v, + (a/a$) V, + VP, = 2i x (k x r), 
v .v ,  = 0, 

as the equations of motion. Putting v2 = (u,, v,, w2) leads to the same representa- 
tion in terms of P2 with the addition of an inhomogeneity, e.g. 

In terms of P, the boundary-value problem is 

[A - a(ayazy1 p2 = 0, 

(4.2) 

P 2 = - G 2  on a=I, (4.3) 

i (a jaz)  P, = - G, - 2im ei6 on z = 2 LID.) 

A non-trivial solution for the homogeneous equivalent of this problem exists. 
(It is, in fact, just of the form (3.1).) The condition that this problem have a solu- 
tion is obtained by multiplying by the conjugate of the homogeneous solution 
and integrating over the volume. In  doing this one makes use of the boundary 
conditions. These involve the suction terms, expressed in terms of vl, and hence 
A,, and so the solvability condition balances the suctions against the forcing 
term and determines A,. After some simplification the result, for the primary 
resonance n = 0,  is 

lo1 [Jl(kZa)l2 a d a [ k f ( 6 , - 3 S , ) ] A I +  12 J , ( k , m ) w 2 d ~  so' 
The Bessel function integrals can be found in Erdelyi et al. (1953, p. 71, p. 45) 
and using the eigenvalue relation one obtains for A, the expression 

7 2  
A, = 

(62  [3 4- kf  + 6 4  3( 1 + in2)] - 36,( 3 + kf  )) kfJl( k,) . 

Resonance is important for A, large compared to E4. Por large 1, 

A, N [klJ1(k,)]-l ,-J kr; 

(4.5) 
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For resonance to be important, then 

k, < E b ,  (4.6) 

which is a severe restriction for most laboratory situations. The first few k, are 

kl = 2.7202, 5.6912, 8.7665, 11.8752. 

and their primary (n = 0 )  resonances are 

(L/D)reB = 1, 0.478, 0.310, 0.229. 

Note that the lowest-order non-linear term, of order s2,, is either axisymmetric 
or doubly periodic in the azimuthal co-ordinate. Thus any such terms in the 
integral (4.4) would vanish. In  other words, the second-order non-linear terms 
are automatically orthogonal to the forcing function, and the results given above 
are valid to O(e2,). The maximum precession rate for which the theory is valid is 
given by a comparison of cubic non-linearities and viscosity, namely 

!2 < (44wD2)w. 

5. Discussion and experiment 
The flow can best be described in terms of a neutral curve-a curve on which 

the velocity is zero. This plays a role similar to the tipped rotation axis €or a 
precessing spheroid. From (3.2) one can see that u1 and w1 are in phase and vanish 

together on the surface ImA 

On this plane the azimuthal velocity is 

tan q+, = - -' 15.1) ReA,' 

v$ = a + QR, E-91 A,\ [2k,J; (k,w) + ( l/w) Jl(k, w ) ]  sin (k l /J  3) z + O(Rp). 

Since w < 1 on the neutral curve, one can obtain a good approximation to the 
curve by putting v6 = 0 and replacing the Bessel functions by the leading terms 
in their power series expansion. This gives 

w = R,E-t(kl/2) ]A,\ sin ( k j / J 3 ) z + O ( R ~ E - 8 ) .  (5.2) 

To test the theory one wants to maximize the response while satisfying (4.6) 
and (4.7). These are conflicting goals, as can be seen by noting that the response 
is N RpE-4 and (4.7) requires that Rp < EP, hence the linear response must be 
bounded by Ei. Thus, the better the linear conditions are satisfied, the smaller 
the response. 

An experiment was performed in an acrylic cylinder mounted horizontally 
and driven through a gear belt with an 1800rev/min electric motor. The cylinder 
was mounted on an air-bearing table which could be precessed about a vertical 
axis by a continuously variable electric transmission. Precession rates from 0 to 
80rev/min were attainable, measured by timing several revolutions of the table. 
The relevant experimental parameters were: 

L = D = 15cm, 

w = 1800rev/min, 

v = 400 cSt (glycerine: water = 96: 4). 
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These parameters give E = 4 x 10-4. The inequality (4.6) is near equality, but 
for I = 1 this is not important. The condition (4.7) is violated for 0 > 5rev/min, 
but this does not appear to be a difficulty. 

The theoretical angle q5,, is 85". This could not be measured accurately but 
one could estimate that the observed angle was between 70" and 90". 

The theoretical position of the neutral curve on the end-plate was 

wmax = 1.50 mm (rev/min)-l. 

This was checked by mounting a disk with concentric circles 2 mm apart on the in- 
sideof the container. Figure 1 shows the theoretical curve, data points, and aleast- 
squares fit to the data. The slope of the least-squares fit is 1-47 mm (rev/min)-l, 
agreeing with the theoretical estimate, but the response at  zero rev/min is 0.7 mm 
according to the least-squares fit. This zero crossing error is probably a reflexion 
of the difficulty of projecting the location of the neutral curve across the boundary 
layer of 0(5mm), inaccuracies in the circles, an upward displacement of the 
bubbles caused by gravity, and general optical distortion. 

10 

.--. e 
E 
v 

Precession frequency (revjmin) 

FIGURE 1. Displacement of the neutral curve 'us. precession frequency: w = 1800 rev/min, 
R = 75 mm, E = 4 x Circles are data points, solid line is theory and dashed line 
is least-squares fit to data. 

Thus the resonance problem is resolved and the amplitude is seen to be limited 
by suction from non-axisymmetric Ekman layers. It has been further shown 
that resonance is only important for the first few LID for Ekman numbers 
attainable in the laboratory. 

The behaviours of these flows beyond the range of the linear theory will be 
discussed in detail at  another time. Some runs were made with water in place 
of the glycerine-water mixture. For this case E = and the linear limit is 
i2 O.lrev/rnin. For i2 large enough so that significant displacements of the 
neutral curve took place, the flow was not sufficiently stable to make measure- 
ments. The average position of the neutral curve seemed to be about half that 
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which would be predicted by the linear theory. An average q5 would be less than 
45". The axis was observed to pitch about, and t o  shed vortices which stabilized at 
about two-thirds of the way to the side wall, were stable there for several seconds 
and then collapsed toward the centre, to be replaced by newly generated vortices. 
These vortices are currently being investigated. 

The experiment was performed in the U.C.L.A. Geophysical Fluid Dynamics 
Laboratory, and the author would like to thank Professor W. V. R. Malkus and 
Mr Paul Cox for assistance. 

This work was supported by the National Science Foundation under grant 
no. GA-849. 
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